模拟集成电路设计和射频集成电路设计有什么区别?
一、模拟集成电路设计和射频集成电路设计有什么区别?
而模拟电路是专门处理模拟信号的电路,虽然数字电路是如此的发达,但模拟电路的地位也越来越不可忽视,模拟电路一般要求经验特别丰富,一般一个模拟集成电路的设计要考虑到如功耗,摆幅,增益,带宽,温度,转换速率,噪声干扰等等诸多因素,折中考虑。 一般来说,射频和模拟集成电路都比较难,但射频比较抽象,而模拟对经验的要求很高,而且要求一个人的综合问题的能力和独特的思维能力。
二、cmos模拟集成电路的优越性?
CMOS集成电路的主要优点是:
(1)功耗低,其静态工作电流在109A数量级,是目前所有数字集成电路中最低的。
(2)高输入阻抗,通常大于1010Ω。
(3)接近理想的传输特性,输出高电平可达电源电压的99.9%以上,低电平可达电源电压的0.1%以下。
(4)电源电压范围广,可在3~18V正常运行。
(5)由于有很高的输人阻抗,要求驱动电流很小,约0,1uA,输出电流在+5V电源下约为500uA,远小于TTI'电路。
三、集成电路设计考研?
这个专业考研选择还是挺多的,本专业有模拟集成电路设计方向、数字集成电路设计方向、射频集成电路设计方向、混合信号集成电路设计方向、微电子器件方向、集成电路工艺方向、人工智能算法方向。此外电气工程方向、电子方向、通信方向、软件开发、计算机、自动化都可以跨考。
四、想了解下数字集成电路设计和模拟集成电路设计都是做什么的?
模拟集成电路设计主要是通过有经验的设计师进行手动的电路调试模拟而得到,与此相对应的数字集成电路设计大部分是通过使用硬件描述语言在eda软件的控制下自动的综合产生。
数字集成电路和模拟集成电路的区别在于数字集成电路主要是针对数字信号处理的模块。如计算机里的2进制、8进制、10进制、16进制的数据进行处理的集成模块。
数字集成电路的运行以开关状态经行运算,它的精度高适合复杂的计算。
模拟集成电路主要是针对模拟信号处理的模块。如话筒里的声音信号,电视信号和vcd输出的图象信号、温度采集的模拟信号和其它模拟量的信号处理的集成模块。
模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。
模拟集成电路的主要构成电路有:放大器、滤波器、反馈电路、基准源电路、开关电容电路等。
模拟集成电路工作在晶体管的三角放大区。想了解下数字集成电路设计和模拟集成电路设计都是做什么的。想了解下数字集成电路设计和模拟集成电路设计都是做什么的。
五、模拟集成电路设计与数字集成电路设计哪个更好,两者差距大吗?
我觉得模拟集成电路更加强大,为什么这么说呢?模拟电路通常设计比数字电流更加困难,对设计人员的水平要求更高。这也是数字集成电路比模拟集成电路更加普及的原因吧。
模拟电路通常需要更多的手工运算,其设计的过程的自动化程度低于数字电路。
模拟电路覆盖整个电子领域,任何一个电子线路功能的实现都会涉及到模拟电路,而数字电路主要应用于电视、雷达、通讯、电子计算机、自动控制、航天等科学领域。
六、集成电路设计与集成系统专业好吗?
我的看法大概是这样的,对于本科而言,电子信息就业更广泛一点,集成电路就业更专业一点。集成电路也要难学一点。你对电路设计很反感的话还是学电子信息工程稍微好一点。如果你要考硕士、博士那么两者差别不大,可以说都一样。关键还是看你学的怎么样,学好了真的是行行出状元!学马克思主义专业都能年薪百万!
七、集成电路设计前景怎样?
中国集成电路设计发展正处于飞速上升期,不仅缺乏技术型人才,而且对领军人才的渴求更高,现在社会中对集成电路设计人才需求量较大,薪资水平上涨较快,职业稳定。
八、模拟集成电路设计工程师待遇怎么样?
哦?楼上再见~ 负责的告诉你,即使有用传统的分立元器件搭建出基本电路的能力,但是该能力对于IC行业完全没有用处,因为IC设计,不论数字模拟,和分立元件搭电路没有一毛钱关系。
另外,请区分精英的真实含义,如果你管一个曾经被视为天之骄子的大学生在今天也叫精英的话,我实在无话可说。IC设计硕士生才刚入行呢,尤其对于模拟,如果没有成功流过片的话那不叫学过模拟设计。待遇的话,以我周围的水平,平均数是起薪8k/m,当然做的越出色,钱越多九、光电集成系统和集成电路设计的区别?
集成电路与集成系统和微电子有点相似 不同的是集成电路是工科,注重时间。微电子学是理科,注重理论。电子科技大学有微电子技术专业 是集成电路和微电子学的中间部分。这三个专业是搞硬件的,比如电脑里面的CPU。总体来说专业不太好学的。有很多课程。电子信息工程是较宽口径专业。本专业学生主要学习信号的获取与处理、电厂设备信息系统等方面的专业知识,受到电子与信息工程实践的基本训练,具备设计、开发、应用和集成电子设备和信息系统的基本能力。专业受微电子 与计算机专业影响较大。主干学科:电子科学与技术、信息与通信工程、计算机科学与技术。
电子信息科学与技术 主要课程:电路理论系列课程、计算机技术系列课程、信息理论与编码、信号与系统、数字信号处理、电磁场理论、自动控制原理、感测技术等。
电路分析原理、电磁理论,天线原理,电子线路、数字电路、算法与数据结构、计算机基础等
集成电路设计:按用途、功能分门别类地设计集成电路(或叫芯片),属微电子领域。 集成系统:是否指的是系统集成?如果是,哪就为达到某种工业或服务目的,将众多的传感器、运算、放大及其它芯片、执行机构集成为一个系统。属硬件工程(当然要软件赋于它的生命)。 电子信息工程:那就比较广泛,但主要是指信息的处理与传输,属硬件系统集成也要软件支持。
十、CMOS集成电路的建议?
集成电路按晶体管的性质分为TTL和CMOS两大类,TTL以速度见长,CMOS以功耗低而著称,其中CMOS电路以其优良的特性成为目前应用最广泛的集成电路。在电子制作中使用CMOS集成电路时,除了认真阅读产品说明或有关资料,了解其引脚分布及极限参数外,还应注意以下几个问题。
1、电源问题
(1)CMOS集成电路的工作电压一般在3-18V,但当应用电路中有门电路的模拟应用(如脉冲振荡、线性放大)时,最低电压则不应低于4.5V。由于CMOS集成电路工作电压宽,故使用不稳压的电源电路CMOS集成电路也可以正常工作,但是工作在不同电源电压的器件,其输出阻抗、工作速度和功耗是不相同的,在使用中一定要注意。
(2)CMOS集成电路的电源电压必须在规定范围内,不能超压,也不能反接。因为在制造过程中,自然形成许多寄生二极管,在正常电压下,这些二极管皆处于反偏,对逻辑功能无影响,但是由于这些寄生二极管的存在,一旦电源电压过高或电压极性接反,就会使电路产生损坏。
2、驱动能力问题
CMOS电路的驱动能力的提高,除选用驱动能力较强的缓冲器来完成之外,还可将同一个芯片几个同类电路并联起来提高,这时驱动能力提高到N倍(N为并联门的数量)。
3、输入端的问题
(1)多余输入端的处理。CMOS电路的输入端不允许悬空,因为悬空会使电位不定,破坏正常的逻辑关系。另外,悬空时输入阻抗高,易受外界噪声干扰,使电路产生误动作,而且也极易造成栅极感应静电而击穿。所以“与”门,“与非”门的多余输入端要接高电平,“或”门和“或非”门的多余输入端要接低电平。若电路的工作速度不高,功耗也不需特别考虑时,则可以将多余输入端与使用端并联。
(2)输入端接长导线时的保护。在应用中有时输入端需要接长的导线,而长输入线必然有较大的分布电容和分布电感,易形成LC振荡,特别当输入端一旦发生负电压,极易破坏CMOS中的保护二极管。其保护办法为在输入端处接一个电阻。
(3)输入端的静电防护。虽然各种CMOS输入端有抗静电的保护措施,但仍需小心对待,在存储和运输中最好用金属容器或者导电材料包装,不要放在易产生静电高压的化工材料或化纤织物中。组装、调试时,工具、仪表、工作台等均应良好接地。要防止操作人员的静电干扰造成的损坏,如不宜穿尼龙、化纤衣服,手或工具在接触集成块前最好先接一下地。对器件引线矫直弯曲或人工焊接时,使用的设备必须良好接地。
(4) 输入信号的上升和下降时间不易过长,否则一方面容易造成虚假触发而导致器件失去正常功能,另一方面还会造成大的损耗。对于74HC系列限于0.5us以内。若不满足此要求,需用施密特触发器件进行输入整形。
(5)CMOS电路具有很高的输入阻抗,致使器件易受外界干扰、冲击和静电击穿,所以为了保护CMOS管的氧化层不被击穿,一般在其内部输入端接有二极管保护电路。
输入保护网络的引入使器件的输入阻抗有一定下降,但仍在108Ω以上。这样也给电路的应用带来了一些限制:
(A)输入电路的过流保护。CMOS电路输入端的保护二极管,其导通时电流容限一般为1mA在可能出现过大瞬态输入电流(超过10mA)时,应串接输入保护电阻。例如,当输入端接的信号,其内阻很小、或引线很长、或输入电容较大时,在接通和关断电源时,就容易产生较大的瞬态输入电流,这时必须接输入保护电阻,若VDD=10V,则取限流电阻为10KΩ即可。
(B) 输入信号必须在VDD到VSS之间,以防二极管因正向偏置电流过大而烧坏。因此在工作或测试时,必须按照先接通电源后加入信号,先撤除信号后关电源的顺序进行操作。在安装,改变连接,拔插时,必须切断电源,以防元件受到极大的感应或冲击而损坏。
(C)由于保护电路吸收的瞬间能量有限,太大的瞬间信号和过高的静电电压将使保护电路失去作用。所以焊接时电烙铁必须可靠接地,以防漏电击穿器件输入端,一般使用时,可断电后利用电烙铁的余热进行焊接,并先焊其接地管脚。
(D)要防止用大电阻串入VDD或VSS端,以免在电路开关期间由于电阻上的压降引起保护二极管瞬时导通而损坏器件。
4、CMOS的接口电路问题
(1)CMOS电路与运放连接。当和运放连接时,若运放采用双电源,CMOS采用的是独立的另一组电源。若运放使用单电源,且与CMOS使用的电源一样,则可直接相连。
(2)CMOS与TTL等其它电路的连接。在电路中常遇到TTL电路和CMOS电路混合使用的情况,由于这些电路相互之间的电源电压和输入、输出电平及负载能力等参数不同,因此他们之间的连接必须通过电平转换或电流转换电路,使前级器件的输出的逻辑电平满足后级器件对输入电平的要求,并不得对器件造成损坏。逻辑器件的接口电路主要应注意电平匹配和输出能力两个问题,并与器件的电源电压结合起来考虑。下面分两种情况来说明:
(A)TTL到CMOS的连接。用TTL电路去驱动CMOS电路时,由于CMOS电路是电压驱动器件,所需电流小,因此电流驱动能力不会有问题,主要是电压驱动能力问题,TTL电路输出高电平的最小值为2.4V,而CMOS电路的输入高电平一般高于3.5V,这就使二者的逻辑电平不能兼容。为此可在TTL的输出端与电源之间接一个电阻R(上拉电阻)可将TTL的电平提高到3.5V以上。
(B)CMOS到TTL的连接。CMOS电路输出逻辑电平与TTL电路的输入电平可以兼容,但CMOS电路的驱动电流较小,不能够直接驱动TTL电路。为此可采用CMOS/TTL专用接口电路,如CMOS缓冲器CC4049等,经缓冲器之后的高电平输出电流能满足TTL电路的要求,低电平输出电流可达4mA。实现CMOS电路与TTL电路的连接。 需说明的时,CMOS与TTL电路的接口电路形式多种多样,实用中应根据具体情况进行选择。
5、输出端的保护问题
(1)MOS器件输出端既不允许和电源短接,也不允许和地短接,否则输出级的MOS管就会因过流而损坏。
(2)在CMOS电路中除了三端输出器件外,不允许两个器件输出端并接,因为不同的器件参数不一致,有可能导致NMOS和PMOS器件同时导通,形成大电流。但为了增加电路的驱动能力,允许把同一芯片上的同类电路并联使用。
(3)当CMOS电路输出端有较大的容性负载时,流过输出管的冲击电流较大,易造成电路失效。为此,必须在输出端与负载电容间串联一限流电阻,将瞬态冲击电流限制在10mA以下。
没有了
推荐阅读